Relatório Final apresentado ao Instituto Federal de Minas Gerais (IFMG), em cumprimento a exigência a disciplina de Trabalho Acadêmico Integrador.

ORIENTADOR: Prof. Dr. Niltom Vieira Junior.

Arcos
2016
AGRADECIMENTOS

Agradeço primeiramente a Deus. A todos de nossas famílias que vem nos apoiando nessa nova jornada na qual iniciamos. Agradeço também ao nosso orientador Prof. Dr. Niltom Vieira Junior, por nos orientar diretamente disciplina TAI, e a todos os demais professores pelo apoio no desenvolvimento do projeto.
RESUMO

Para o projeto esteira transportadora com sistema de redução por polias, foram empregados cinco disciplinas; geometria analítica, cálculo I, física I, desenho técnico computacional, Ciência, tecnologia e sociedade. Com isto, um dos objetivos do presente trabalho foi aplicação das disciplinas citadas e a junção da esteira transportadora com o sistema de redução por polias, no qual realiza o projeto através dos métodos teóricos e práticos. O método teórico foi a aplicação das matérias citadas, pesquisas referenciais e dados práticos. O método prático foi o desenvolvimento de uma modelagem baseada em dados teóricos, onde se representa um sistema físico real, para predizer ou descrever seu comportamento. Com os dados da modelagem, têm-se as seguintes especificações do projeto: energia cinética, movimento circular, conceitos de velocidades e aceleração, rotação por minuto de cada polia, a taxa em que a altura varia em relação ao tempo do cone formado pelo empilhamento do produto.

LISTA DE ILUSTRAÇÕES

Figura 1 – Representação de dois pontos quaisquer no plano cartesiano .. 10
Figura 2 - Representação de segmento que tem os dois pontos como extremidade .. 10
Figura 3 - Triângulo retângulo utilizando os pontos A e B .. 11
Figura 4 – Geometricamente .. 12
Figura 5 - Representação geométrica do ângulo entre dois vetores .. 12
Figura 6 - Flecha utilizada para representar vetores .. 13
Figura 7 - Gráfico de limite .. 15
Figura 8 - Gráfico da derivada .. 16
Figura 9 - Polias para aumentar a rotação .. 16
Figura 10 - Polias para diminuir a rotação ... 17
Figura 11 - Vista lateral do primeiro protótipo ... 21
Figura 12 - Vista frontal do primeiro protótipo ... 21
Figura 13 - Vista superior do protótipo sem a correia ... 22
Figura 14 - Vista lateral do protótipo .. 23
Figura 15 - Vista superior do protótipo .. 23
Figura 16 - Gráfico velocidade x tempo .. 24
Figura 17 - Esquema do sistema de redução por polias .. 25
Figura 18 - Representação gráfica .. 26
Figura 19 - Representação gráfica .. 27
Figura 20 - Vistas ortogonais e auxiliares da esteira .. 31
Figura 21 - Vista da perspectiva isométrica da esteira .. 32
Figura 22 - Vistas ortogonais e auxiliares do sistema de redução de polias ... 33
Figura 23 - Dimensões das polias maiores .. 33
Figura 24 - Dimensões das polias menores ... 34
Figura 25 - Vista da perspectiva isométrica do sistema de redução de polias .. 34
Figura 26 - Vista da perspectiva da esteira e do sistema de redução de polias ... 35
Figura 27 - Chave de emergência .. 36
Figura 28 - Detector de rasgos .. 37
Figura 29 - Detector de metais ... 38
Figura 30 - Extrator de sucatas ... 38
Figura 31 - Figura 30 - Extrator de sucatas .. 39
SUMÁRIO

1 INTRODUÇÃO .. 5

2 JUSTIFICATIVA .. 6

3 CONTEXTO HISTÓRICO .. 7
 3.1 Contexto histórico da esteira transportadora .. 7
 3.2 Contexto histórico do sistema de redução por polias ... 7

4 REFERENCIAL TÓRICO ... 9
 4.1 Física ... 9
 4.2 Geometria Analítica ... 9
 4.3 Cálculo ... 14
 4.4 Desenho Técnico ... 17
 4.5 Ciência, Tecnologia e Sociedade ... 17

5 COMPONENTES .. 18
 5.1 Componentes da esteira transportadora .. 18
 5.2 Componentes do sistema de redução por polias ... 18

6 LISTA DE MATERIAIS .. 19

7 DESENVOLVIMENTO DO PROTÓTIPO ... 20

8 APLICAÇÕES DAS DICIPLINAS ... 24
 8.1 Física .. 24
 8.2 Geometria Analítica .. 26
 8.3 Cálculo ... 28
 8.4 Desenho Técnico ... 31
 8.5 Ciência, Tecnologia e Sociedade ... 35

9 CONCLUSÃO .. 40

REFERÊNCIAS ... 41
1 INTRODUÇÃO

Este projeto apresenta uma pesquisa sobre o funcionamento de uma esteira transportadora com a junção de um sistema de redução por polias, onde se aplica disciplinas de engenharia mecânica, e apresenta uma simulação baseada no real funcionamento de uma esteira já criada em uma indústria. As correias transportadoras detêm uma posição dominante no transporte de materiais devido às suas inerentes vantagens, como economia e segurança de operação, confiabilidade, versatilidade e enorme gama de aplicação. Utilizados-nos mais diversos segmentos de mercado, as correias transportadoras possuem características técnicas que permitem sua aplicação em sistemas de transporte e elevação de materiais de pequeno, médio e grande porte, dependendo de sua adequada configuração (ZHANG; XIA, 2011; FERDORKO et al., 2013; ANDRIANOV; HORSSEN, 2008).

No setor minero-metalúrgico, observa-se que as correias transportadoras constituem o meio mais difundido de transporte para grandes quantidades de materiais a granel, reduzindo desta forma, a quantidade de caminhões e o custo deste tipo de serviço.

Em adição, as correias transportadoras são utilizadas em numerosos processos, em conexão com seu propósito normal de providenciar um fluxo contínuo de materiais entre operações. O sistema é basicamente formado por uma correia sem fim, a qual é estendida entre dois tambores (acionamento e de retorno) principais e roletes justapostos, sobre os quais a correia desliza, com baixo atrito, possibilitando a movimentação de cargas pesadas. (FERDOKO; IVANCO, 2012).

O acoplamento de um sistema de redução por polias foi fundamental para este projeto, pois o mesmo permite uma redução de velocidade, sendo assim possível determinar uma rotação ideal para funcionamento da esteira transportadora. Além disso, este sistema permitiu aumentar o torque gerado pelo motor, tendo em vista que o motor utilizado era considerado fraco, mas graças ao sistema de redução ele conseguiu realizar todo o movimento sem problemas.
2 JUSTIFICATIVA

A esteira transportadora acoplada a um sistema de redução por polias foi o tema escolhido para desenvolver o Trabalho Acadêmico Integrador por ser um conjunto de equipamentos extremamente importante em grande parte das indústrias, armazéns, mineradoras, etc. Além disso, o tema permitiu realizar aplicações das matérias estudadas no primeiro período de engenharia mecânica; e, consequentemente, permitiu aos integrantes do grupo relacionar os conhecimentos teóricos com a prática, contribuindo para que sejam futuros profissionais que saibam utilizar seus conhecimentos adquiridos durante sua vida acadêmica em situações que o dia-a-dia de um engenheiro exige.
3 CONTEXTO HISTÓRICO

3.1 Contexto histórico da esteira transportadora

As correias transportadoras primitivas eram usadas desde o século XIX. Em 1892, Thomas Robins iniciou uma série de invenções que levaram ao desenvolvimento de uma correia transportadora usada para carregar carvão, metal e outros produtos. Em 1901, Sandvik inventou e começou a produção de correias transportadoras de aço (COLHIASSO, 2013).

Em 1905, Richard Sutcliffe inventou a primeira correia transportadora para ser usada em minas de carvão, a qual revolucionou a indústria mineira. Em 1913, Henry Ford apresentou as linhas de montagem das correias transportadoras na fábrica da Ford Motor Company’s Highland Park, Michigan (COLHIASSO, 2013).

Em 1972, a sociedade francesa REI criou na Nova Caledônia a mais longa correia transportadora do mundo, com 13,8km de comprimento. Hyacynthe Marcel Bocchetti foi o designer do conceito (COLHIASSO, 2013).

Em 1957, a companhia B.F. Goodrich patenteou uma correia transportadora a ser produzida como o Sistema de Reviravolta da Correia Transportadora. Incorporando uma meia reviravolta, tinha a vantagem acima das correias convencionais de uma maior longevidade pois conseguia expor toda a sua superfície para vestir e rasgar (COLHIASSO, 2013).

As correias Möbius já não são fabricadas porque as correias modernas não-distorcidas conseguem ser mais duradouras ao construí-las a partir de várias camadas de diferentes materiais. Em 1970, Intralox, uma companhia em Louisiana, registou a primeira patente para todas as correias modulares de plástico (COLHIASSO, 2013).

3.2 Contexto histórico do sistema de redução por polias

Este elemento de máquina não tem uma origem bem definida, porém há registros de que os mesopotâmios já utilizavam polias para erguer objetos em meados de 1500 a.C., já o primeiro sistema de roldanas foi usado por Arquimedes em 287 a.C., este foi um matemático, físico, engenheiro, inventor, e astrônomo grego, se utilizou deste sistema para a movimentar grandes quantidades de peso exercendo menos força. Para demonstrar e comprovar a eficiência de seu dispositivo ele organizou uma grande demonstração, onde, muitos soldados retiraram da água um navio da frota real grega e o colocaram na areia com grande esforço utilizando-se de métodos normais da época, em seguida o inventor ligou o navio a seu
sistema de polias e convidou o Rei Hieron para puxar a corda que estava ligada ao sistema, o Rei mesmo estando sozinho conseguiu arrastar o navio sobre a areia executando pouco esforço, o que causou surpresa em todos os que estavam presentes inclusive o Rei. Com seu invento ocorreu um grande avanço nos mais diversos trabalhos executados de forma manual até então, trabalhos estes que exigiam grande esforço e muita mão de obra. A transmissão por polias e correias é uma das mais antigas na qual a transmissão de potência ocorre por atrito entre a correia e as polias, consta de um disco de madeira ou de metal, que pode girar em torno de um eixo que passa por seu centro e é normal ao seu plano. Na periferia desse disco existe um sulco, denominado gola ou garganta, no qual passa uma corda ou cabo contornando-o parcialmente. O eixo é sustentado por uma peça em forma de U, denominada chapa, que lhe serve de mancais. As polias, quanto aos modos de operação, classificam-se em fixas e móveis. Nas fixas os mancais de seus eixos (a chapa) permanecem em repouso em relação ao suporte onde foram fixados. Nas móveis tais mancais se movimentam juntamente com a carga que está sendo deslocada pela máquina. Cadernais e talhas são combinações de roldanas. Pode ser classificada como simples quando existe 2 polias (uma condutora e uma conduzida) ou múltipla quando existem polias intermediárias. As transmissões por correias e polias apresentam diversas vantagens dentre as quais baixo custo inicial, alto coeficiente de atrito, elevada resistência ao desgaste, funcionamento silencioso e sendo flexíveis e elásticas, são adequadas para grandes distâncias entre centros.

Na roldana fixa, numa das extremidades da corda aplica-se a força motriz F (aplicada, potente) e na outra, a resistência R, a carga a ser elevada. Na roldana móvel, uma das extremidades da corda é presa a um suporte fixo e na outra se aplica a força motriz F --- a resistência R é aplicada no eixo da polia (a carga é posta no gancho da chapa). Na polia fixa a vantagem mecânica vale 1 (VM = bp/br = 1), sua função como máquina simples é apenas a de inverter o sentido da força aplicada, isto é, aplicamos uma força de cima para baixo numa das extremidades da corda e a polia transmite á carga, para levantá-la, uma força de baixo para cima. Isso é vantajoso, porque podemos aproveitar o nosso próprio peso (como um contrapeso) para cumprir a tarefa de levantar um corpo.
4 REFERENCIAL TEORICO

4.1 Fisica

Uma esteira transportadora acoplada a um sistema de redução por polias é um tema que envolve uma grande quantidade de conceitos físicos. Abaixo se encontra uma breve explicação teórica dos conceitos utilizados neste trabalho.

A aceleração instantânea e a velocidade instantânea são grandezas físicas que indicam respectivamente a aceleração e a velocidade de um corpo em um determinado instante. Já a Aceleração média é a variação da velocidade pela variação do tempo e a velocidade média é a média da velocidade em todo o percurso. A unidade de medida utilizada para deslocamento é o metro, e para o tempo é o segundo (SEARS; ZEMANSKY, 2004).

A energia cinética é uma grandeza escalar que esta ligada ao movimento, havendo energia cinética em momentos em que uma partícula apresenta uma velocidade, onde para determina-la é necessário a massa e a velocidade da partícula em questão. A unidade de medida utilizada para determinar essa grandeza é o Joule (SEARS; ZEMANSKY, 2004).

Os conceitos de movimento circular são utilizados para estudar corpos que apresentam uma trajetória circular, podendo determinar o período, a frequência, a velocidade linear e a velocidade angular da partícula em questão, onde o período é o tempo gasto para que o corpo complete sua volta, frequência é o numero de voltas que o corpo efetua em um determinado tempo, a velocidade linear é a velocidade de um vetor sempre tangente a trajetória da partícula, e a velocidade angular é a velocidade que uma partícula percorre determinado ângulo central de uma circunferência (SEARS; ZEMANSKY, 2004).

4.2 Geometria Analítica

Distância entre dois pontos

A distância entre dois pontos é o comprimento da menor linha reta que os liga e é um princípio fundamental da Geometria Analítica.

A distância permeia todos os conceitos da Geometria Analítica, pois, nessa área da Matemática, tem-se a relação de elementos geométricos com os algébricos, e o elemento básico da Geometria é o ponto.

Um dos conceitos básicos da Geometria é que a menor distância entre dois pontos é dada por uma reta. Na Geometria Analítica, esses pontos recebem coordenadas no plano
cartesiano e, por meio dessas coordenadas, podemos encontrar o valor da distância entre dois pontos.

Figura 1: Representação de dois pontos quaisquer no plano cartesiano.

A distância entre os pontos A e B é a medida do segmento que tem os dois pontos como extremidade. Por se tratar de dois pontos quaisquer se representam as coordenadas desses pontos de maneira genérica.

Figura 2: Representação de segmento que tem os dois pontos como extremidade.

Sabe-se que os eixos coordenados do plano cartesiano são ortogonais, portanto, pode-se construir um triângulo retângulo utilizando os pontos A e B, como mostra a figura a seguir:
Figura 3: Triângulo retângulo utilizando os pontos A e B.

Fórmula para o cálculo da distância entre dois pontos.

Note que o segmento AB é a hipotenusa do triângulo AOB, e a medida de AB corresponde à distância entre esses dois pontos. Por se tratar de um triângulo retângulo, pode-se aplicar o teorema de Pitágoras:

\[d^2_{AB} = AO^2 + BO^2 \]

Entretanto, tem-se:

\[AO = XB - XA e BO = YB - YA \]

Portanto, a expressão fica da seguinte forma:

\[d^2_{AB} = (XB - XA)^2 + (YB - YA)^2 \]

Por fim, tem-se que:

\[d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2} \]

Note que basta fazer as diferenças das coordenadas de cada um dos pontos e elevar ao quadrado.

Exemplo:

Calcule a distância entre os pontos A (4,5) e B(1,1) e represente-os geometricamente.

Como visto anteriormente, basta aplicar a expressão para o cálculo da distância entre dois pontos. Sendo assim:

\[d_{AB} = \sqrt{(4 - 1)^2 + (5 - 1)^2} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5 \]

Unidades de medida
Ângulo entre dois vetores

O ângulo entre dois vetores é calculado por meio de uma expressão que relaciona o produto interno com o comprimento de cada um desses vetores.

Vetores são segmentos de reta orientados responsáveis por representar a trajetória, em linha reta, do movimento realizado por um ponto. Ao considerar dois vetores, é possível calcular o ângulo entre eles por meio de conhecimentos provenientes da Geometria Analítica. Para tanto, é necessário conhecer algumas operações que podem ser realizadas entre vetores e que fundamentam o cálculo do ângulo entre eles.
Por serem segmentos de reta orientados, os vetores são representados por flechas, que nada mais são do que segmentos de reta cuja direção e sentido de seu início e fim ficam bem definidos. Desse modo, a ponta da flecha aponta para o ponto final do movimento, enquanto a outra extremidade mostra seu ponto inicial.

Figura 6: Flecha utilizada para representar vetores.

O ponto inicial de um vetor geralmente é a origem \(O = (0,0) \), e o ponto final geralmente é utilizado para representá-lo. Portanto, um vetor \(v = (x,y) \) tem seu ponto inicial na origem e ponto final no par ordenado \((x,y)\).

Essa configuração permite que o cálculo do comprimento de um vetor seja reduzido ao cálculo da distância do ponto final desse vetor até a origem. O comprimento do vetor \(v \) é chamado de norma de \(v \) ou módulo de \(v \), é denotado por \(|v| \) e é definido de modo semelhante ao módulo de um número real.

\[
|v| = \sqrt{x^2 + y^2}
\]

Fórmula utilizada para calcular a norma do vetor \(v = (x,y) \)

Outra definição importante acerca dos vetores é a de produto interno. De certa forma, produto interno é um número real que relaciona o ângulo entre dois vetores com o seu comprimento. Contudo, é possível mostrar que o produto interno entre os vetores \(v = (x_1,y_1) \) e \(u = (x_2,y_2) \), denotado por \(<u,v> \), é dado pela expressão:

\[
<u,v> = x_1 \cdot x_2 + y_1 \cdot y_2
\]

Seja \(\phi \) o ângulo entre os vetores \(u \) e \(v \). O número real, resultante de, relaciona o ângulo \(\phi \) com os comprimentos de \(u \) e \(v \) da seguinte maneira:
Portanto, o produto interno entre dois vetores, além de poder ser calculado pela soma entre os produtos de suas coordenadas, também pode ser calculado por meio do produto do cosseno do ângulo entre esses dois vetores com seus comprimentos.

Ângulo entre dois vetores

De posse das definições descritas acima, é possível calcular o ângulo entre dois vetores genéricos \(v = (x_1,y_1) \) e \(u = (x_2,y_2) \) utilizando a fórmula para produto interno = \(\cos \varphi \cdot |v| \cdot |u| \). Para tanto, sendo \(0 < \varphi < \pi \) e os vetores \(u \) e \(v \) não nulos, tem-se:

\[
<v, u> = \cos \varphi \cdot |v| \cdot |u|
\]

\[
\cos \varphi = \frac{<v, u>}{|v| \cdot |u|}
\]

Os cálculos a serem realizados utilizando esse método são:

\[
\cos \varphi = \frac{x_1 \cdot x_2 + y_1 \cdot y_2}{\sqrt{x_1^2 + y_1^2} \cdot \sqrt{x_2^2 + y_2^2}}
\]

Após isso, para encontrar o valor do ângulo \(\varphi \), basta calcular \(\arccos \varphi \), o que pode ser feito em uma calculadora científica.

4.3 Cálculo

Partindo da definição de limites, que diz o seguinte, é utilizada no intuito de expor o comportamento de uma função nos momentos de aproximação de determinados valores. O limite de uma função possui grande importância no cálculo diferencial e em outros ramos da análise matemática, definindo derivadas e continuidade de funções. Dizemos que uma função \(f(x) \) tem um limite \(A \) quando \(x \to a \) \((\to: \) tende\), isto é, \(\lim_{x \to a} F(x) = A \), se, tendendo \(x \) para o seu limite, de qualquer maneira, sem atingir o valor \(a \), o módulo de \(f(x) - A \) se torna e permanece menor que qualquer valor positivo, predeterminado, por menor que seja.

Abaixo temos um gráfico explicativo, onde o número \(L \) é o limite de \(F(x) \) quando \(x \) tende a \(a \) se, dado um número \(\varepsilon > 0 \) arbitrário, existe um \(\delta > 0 \) tal que \(|F(x) - L| < \varepsilon \) sempre que \(0 < |x - a| < \delta \).
Uma vez estudado os conceitos de limites pode-se então estudar a derivada.

Dizemos que Derivada é a taxa de variação de uma função \(y = f(x) \) em relação à \(x \), dada pela relação \(\Delta x / \Delta y \). Considerando uma função \(y = f(x) \), a sua derivada no ponto \(x = x_0 \) corresponde à tangente do ângulo formado pela intersecção entre a reta e a curva da função \(y = f(x) \), isto é, o coeficiente angular da reta tangente à curva.

De acordo com a relação \(\Delta x / \Delta y \), temos que:

\[
\frac{dy}{dx} = f'(x) = y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
\]

Partindo da ideia de existência do limite. Temos que a taxa de variação instantânea de uma função \(y = f(x) \) em relação à \(x \) é dada pela expressão \(dy / dx \).

Abaixo temos um gráfico explicativo, onde podemos definir o seguinte quociente, denominado razão incremental da função: \(y = f(x) \), quando \(x \) varia de \(x_0 \) para \(x_0 + \Delta x_0 \).
Pode-se calcular também a velocidade da esteira em função do diâmetro das polias do sistema de redução.

A velocidade final fornecida por um conjunto transmissor depende da relação do diâmetro das polias. Polias de diâmetros diferentes transmitem velocidade maior ou menor à máquina. No caso onde a polia motora (polia que fornece o movimento) é maior que a movida (polia que recebe o movimento) a velocidade transmitida para a máquina será maior.

Figura 8: Gráfico da derivada.

Fonte: (SILVA, 2016).

Figura 9: Polias para aumentar a rotação.

Fonte: Bonfim (2012).

Quando a polia motora é menor que a polia movida, a velocidade será menor, ou seja, haverá menor rotação na saída do sistema.
Matematicamente utiliza-se a seguinte expressão para mostrar essa relação:

\[
\frac{n_1}{n_2} = \frac{D_2}{D_1}
\]

Onde, \(n_1\) é a rotação (rpm) da polia motora, \(n_2\) a rotação da polia movida, \(D_2\) o diâmetro da polia movida e \(D_1\) o diâmetro da polia motora.

4.4 Desenho técnico

No projeto da esteira transportadora, será aplicado na disciplina de Desenho Técnico as vistas ortogonais e perspectivas, sejam elas frontal, superior, lateral esquerda e lateral direita mostrando cada parte desenvolvida no projeto, com medidas reais para maior entendimento do que será projetado.

4.4 Ciência tecnologia e sociedade

Aplicando alguns contextos históricos jácitados é possível estabelecer como a evolução das Esteiras Transportadoras impactou a sociedade, graças ao seu quesito segurança e como isso afeta diretamente no dia a dia de nossa sociedade.
5 COMPONENTES

5.1 Componentes da esteira transportadora

Os componentes de uma esteira transportadora variam de acordo com o modelo e suas aplicações, porém todas elas se constituem basicamente de: correia para contato direto com os materiais a serem transportados, rolo de retorno, rolo de acionamento, roletes para sustentação da correia, mancais, eixos, motor elétrico e estrutura de sustentação.

5.2 Componentes do sistema de redução por polia

Existem inúmeros modelos de sistema de redução por polias, porém, um modelo que mais se aproxima do protótipo se constitui basicamente de: polias, correia, mancais, eixos e estrutura de sustentação.
6 LISTA DE MATERIAIS

a) Madeira de MDF;
b) (x2) 40cm x 8cm x 0,6cm;
c) (x4) 3,5cm x 11cm x 0,6cm;
d) (x2) 2,5cm x 8cm x 0,6cm;
e) (x2) 15cm x 4,5cm x 0,6cm;
f) (x1) 29,5cm x 5cm x 0,6cm;
g) (x1) 40cm x 60cm x 1,6cm;
h) (x8) rolos de madeira com 2,4cm de diâmetro;
i) (x3) barra roscada de 5/32 polegadas;
j) (x7) eixos de eletrodo de 13cm de comprimento e 15/16 polegadas;
k) (x2) eixos de eletrodo de 8cm de comprimento e 15/16 polegadas;
l) (x1) eixo de eletrodo de 10cm de comprimento e 15/16 polegadas;
m) (x1) eixo de eletrodo de 15cm de comprimento e 15/16 polegadas;
n) (x1) correia de EVA de 80cm x 9cm;
o) (x4) parafusos de 1/16 polegadas;
p) (x1) suporte para o motor;
q) (x6) polias de 4,5cm de diâmetro e 0,2 de espessura;
r) (x3) polias de 4cm de diâmetro e 0,2 de espessura;
s) (x5) polias de 1,6cm de diâmetro e 0,2 de espessura;
t) (x10) polias de 2cm de diâmetro e 0,2 de espessura;
u) (x4) elásticos;
v) (x1) anel oring;
w) (x1) motor elétrico;
x) (x1) fonte modelo UC0104-06AC/DC, entrada: 100-240vca, frequência: 50-60Hz, 120mA, saída: 5.2vcc/800mA;
y) (x1) arduino.
7 DESENVOLVIMENTO DO PROTÓTIPO

A ideia inicial para construção do protótipo era utilizar matérias recicláveis, onde matéria prima principal é a madeira, inicialmente derivada de caixas usadas para transporte de hortifrutí, porém, durante o projeto foi observado que a densidade da madeira era ruim e que a mesma se encontrava com deformações que comprometiam a estrutura da esteira.

Após vários testes neste processo, com várias tentativas falhas na montagem, resolveu-se mudar o material ainda mantendo a matéria principal de madeira porém derivada de MDF e profissionalmente já cortada e furada nas medidas as quais determinamos para o desenvolvimento do protótipo. Durante as montagens houve vários empecilhos e dificuldades, sendo a primeira em relação a que se encontrava deformada e que não tinha resistência, a cada tentativa de corte da madeira se perdia “um pedaço” da mesma, pois ela se partia em locais cujo não era esperado já que o material já estava comprometido e sua natureza não era de uma resistência adequada ao trabalho de furação e cortes. Outro problema encontrado foi a falta de ferramentas adequadas, tendo em vista que todo trabalho técnico manual além de um conhecimento e de um profissional preparado exige-se para exercer com excelência boas ferramentas, e como se tratava de um projeto desenvolvido na maioria por estudantes sem experiência e sem nenhum tipo de ferramenta profissional houve a dificuldade de realizar as montagens, sendo essas cortes, furações e medições.

Antes do processo de montagem, foi feita uma seleção de protótipos para serem escolhidos para desenvolvimento, onde cada integrante do grupo daria uma sugestão e a que fosse escolhida pela maioria ou por todos seria o projeto executado, onde o integrante Felipe Barcelos sugeriu a construção de um protótipo de um gerador eólico, o integrante Felipe Guedes sugeriu a construção da esteira transportadora, o integrante Guilherme Faria sugeriu a construção de um protótipo de um mini gerador elétrico, o integrante Matheus Arcanjo sugeriu a construção de um protótipo de um mini torno, e o integrante Nikael Resende sugeriu a construção de um protótipo de um mini braço robótico. Após uma análise de caso envolvendo as ideias decidiu-se optar pela esteira transportadora, pois a mesma era o tema que mais se adequava aos conhecimentos e experiências dos integrantes do grupo e muito utilizada na mecânica aplicada de indústrias e ou empresas cujo dependem de um transporte de carga de sacarias e ou granel.

Depois de decidido o tema do trabalho, iniciou-se o processo montagem, onde foram realizadas reuniões semanalmente para desenvolvê-lo. Na primeira semana iniciaram-se os trabalhos de busca dos materiais necessários, onde foi obtida uma caixa de madeira e eixos
metálicos por doação e também uma borracha para ser feita a montagem da esteira. Com esses materiais em mãos foram iniciadas as montagens.

Na primeira tentativa foram cortadas as peças e feitas as furações, porém observou-se que devido às deformações da madeira e a falta de ferramentas para fazer os furos com uma centralização exata havia um desalinhamento da correia e também uma falta de estética em relação ao acabamento. Tendo em vista isso, notou-se que deveria ser feito a desmontagem do protótipo para uma nova tentativa.

Na segunda tentativa, após a desmontagem, objetivou-se realizar novas furações de forma com que os mesmos ficassem alinhados, e trocou-se o material da correia de borracha para EVA, porém mesmo com os furos visualmente alinhados, o problema de desbalanceamento dos eixos se manteve. Abaixo tem-se as imagens do protótipo após a segunda tentativa.

Figura 11: Vista lateral do primeiro protótipo.

![Figura 11](image1)
Fonte: o autor.

Figura 12: Vista frontal do primeiro protótipo.

![Figura 12](image2)
Fonte: o autor.
Na terceira tentativa, manteve-se a estrutura e procurou-se evitar o desalinhamento da correia colocando uma estrutura de apoio na parte interna dos rolos e na parte externa da correia no local exato da furação dos eixos o que resolveu parcialmente o problema, porém, esta medida não foi aprovada pelos integrantes do grupo.

Na quarta e última tentativa foi decidido trocar o material e utilizar o MDF para a construção da estrutura, e, com auxílio de um profissional que possuía as ferramentas adequadas para o corte e furação, a estrutura do projeto foi otimizada e acrescentou-se um sistema de alinhamento da correia no rolo de retorno, cujo sistema nada mais é do que um dos rolos sustentado por um suporte que permite a movimentação caso haja necessidade de regulagem para alinhamento da esteira. Acrescentou-se também um sistema para acionamento (on/off) do protótipo utilizando um arduino com conexão bluetooth para o mesmo ser acionado de forma remota. Abaixo tem-se as imagens da esteira após ser concluída.

Figura 13: Vista superior do protótipo sem a correia.

Fonte: o autor.
Tendo em vista o desenvolvimento do protótipo como um todo, concluiu-se que além dos conhecimentos técnicos e da pesquisa é necessário um bom material e ferramentas de trabalho adequadas, pois sem as mesmas haveria inúmeras tentativas para a correção dos problemas citados.
8 APLICAÇÕES DAS DISCIPLINAS

8.1 Física

A velocidade de uma partícula no momento em que ela parte do ponto máximo inferior até o topo da esteira é uma velocidade constante, onde ela gasta 4 segundos para percorrer todo o percurso, com uma velocidade de 0,095 m/s. Com isso, podemos concluir que a aceleração desta partícula será nula.

Figura 16: Gráfico velocidade x tempo.

Pode-se provar isso analisando o gráfico e usando conceitos de física e derivada. Como a derivada de uma função é a taxa de variação da velocidade de uma partícula, ou seja, sua aceleração, e como a derivada de uma função constante é nula, então podemos afirmar que sua aceleração também será nula.

O sistema de redução por polias é composto por oito polias, porém, existem apenas dois diferentes diâmetros de polias ligadas de forma intercalada, sendo uma com diâmetro de 1,6 cm, e a outra com diâmetro de 4 cm. Utilizando os conceitos físicos de movimento circular e sabendo que a velocidade de rotação do motor é 2900 rotações por minuto, podemos determinar o período, a frequência, a velocidade linear e a velocidade angular de cada uma delas. Abaixo, temos o esquema do sistema de redução:
Figura 17: Esquema do sistema de redução por polias.

Fonte: o autor.

A polia 1 é ligada diretamente ao eixo do motor, e posteriormente ligadas por correias seguindo a sequência numérica indicada no esquema do sistema de redução. Obtemos assim, as seguintes características das polias:

Quadro 1: Dados obtidos a partir dos cálculos.

<table>
<thead>
<tr>
<th>Polia</th>
<th>Diâmetro</th>
<th>RPM</th>
<th>Período</th>
<th>Velocidade Linear</th>
<th>Velocidade Angular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polia 1</td>
<td>1,6 cm</td>
<td>2900</td>
<td>0,02 s</td>
<td>251,3 m/s</td>
<td>314,1 m/s</td>
</tr>
<tr>
<td>Polia 2</td>
<td>4 cm</td>
<td>1160</td>
<td>0,05 s</td>
<td>251,3 m/s</td>
<td>125,6 m/s</td>
</tr>
<tr>
<td>Polia 3</td>
<td>1,6 cm</td>
<td>1160</td>
<td>0,05 s</td>
<td>100,5 m/s</td>
<td>125,6 m/s</td>
</tr>
<tr>
<td>Polia 4</td>
<td>4 cm</td>
<td>464</td>
<td>0,12 s</td>
<td>104,7 m/s</td>
<td>52,3 m/s</td>
</tr>
<tr>
<td>Polia 5</td>
<td>1,6 cm</td>
<td>464</td>
<td>0,12 s</td>
<td>41,8 m/s</td>
<td>52,3 m/s</td>
</tr>
<tr>
<td>Polia 6</td>
<td>4 cm</td>
<td>186</td>
<td>0,32 s</td>
<td>39,2 m/s</td>
<td>19,6 m/s</td>
</tr>
<tr>
<td>Polia 7</td>
<td>1,6 cm</td>
<td>186</td>
<td>0,32 s</td>
<td>15,7 m/s</td>
<td>19,6 m/s</td>
</tr>
<tr>
<td>Polia 8</td>
<td>1,6 cm</td>
<td>186</td>
<td>0,32 s</td>
<td>15,7 m/s</td>
<td>19,6 m/s</td>
</tr>
</tbody>
</table>

Fonte: o autor.

Utilizando os conceitos de energia cinética e tendo em vista a seguinte fórmula para cálculo da mesma:

\[Ec = \frac{m \cdot v^2}{2} \]
Então, sabendo que o protótipo da esteira transportadora possui uma velocidade constante de 0,095 m/s, podemos dizer que a energia cinética irá variar de acordo com a massa do objeto a ser transportado. Porém, utilizando como exemplo um objeto com massa de 1 k/g e realizando os cálculos, este objeto ganhou uma energia cinética de 0,0045 Joules.

8.2 Geometria Analítica

Em geometria analítica foram aplicados dois tópicos da disciplina, distância entre dois pontos e ângulos entre dois vetores.

Utilizando o conceito de distância entre dois pontos, foram calculados a distância entre os pontos AO que forma um triangulo em relação a base que suporta a esteira, assim como representado na figura 1 abaixo:

Figura 18: Representação gráfica.

Usam-se as formulas:
\[d_{AB}^2 = AO^2 = BO^2, \ AO = x_2 - x_1 \ e \ BO = y_2 - y_1 \]

Tem-se:
\[BO = 20,5 - 9,5 = 11 \]

Calculando:
\[AO^2 + 11^2 = 40^2 \rightarrow AO^2 + 121 = 1600 \rightarrow AO^2 = 1600 - 121 \rightarrow AO^2 = 1479 \rightarrow AO = \sqrt{1479} \]

Conclui-se que:
\[AO \approx 38,5 \text{cm}. \]
Cálculo da inclinação angular da esteira.

Para carregar certo produto uma esteira transportadora não pode exceder o limite acima 45°, dependendo de sua inclinação angular o produto deslizará na esteira retomando o seu percurso inicial. Para alguns tipos de produtos a esteira deve ter uma inclinação angular abaixo de 45°, então para saber qual a inclinação angular que foi colocado na esteira aplica-se ângulo entre dois vetores, onde utiliza a distância AO para calcular a inclinação angular representada na figura 2 abaixo:

![Figura 19: Representação gráfica.](image)

Fonte: o autor.

Para calcular a inclinação angular foram criados dois vetores \(\vec{V} \) e \(\vec{U} \) representados na figura 2.

Usa-se a fórmula:

\[
\cos \theta = \frac{(\vec{V} \cdot \vec{U})}{|V||U|}
\]

Onde se tem os dados:

\(\vec{V} \) (38,5;11) e \(\vec{U} \) (38,5;0)

Calculando:

\[|V| = \sqrt{a^2 + b^2} \rightarrow |V| = \sqrt{38,5^2 + 11^2} \rightarrow |V| = \sqrt{1482,25 + 121} \rightarrow |V| = \sqrt{1603,25} \]

\[|U| = \sqrt{a^2 + b^2} \rightarrow |U| = \sqrt{38,5^2 + 0^2} \rightarrow |U| = \sqrt{1482,25} \]

\[|V||U| = \sqrt{1603,25} \cdot \sqrt{1482,25} \rightarrow |V||U| = \sqrt{2376417,313} \]

\((V.U) = (38,5,38,5) \times (11.0) \rightarrow (V.U) = 1482,25 \)

Tem-se:

\[
\cos \theta = \frac{1482,25}{\sqrt{2376417,313}} \cong 0,9615
\]

Conclui-se que:

\(\cos^{-1} 0,9615 \cong 15,95° \)
Então a inclinação angular é de \(\approx 15,95^\circ \).

8.3 Cálculo

Calculando a rotação de polias:

Para calcular a rotação por minuto (RPM) de cada polia do sistema de redução, usará seus respectivos diâmetros.

Começando pela primeira polia motora acoplada ao eixo do motor que possui uma rotação de 2900 RPM (n1) e diâmetro 1,6mm (D1) e a polia movida de 4mm(D2).

\[
\frac{2900}{n^2} = \frac{4}{1,6} \rightarrow 4n^2 = 4640 \rightarrow n^2 = 1160 \text{ RPM}
\]

\[
\frac{1160}{n^2} = \frac{4}{1,6} \rightarrow 4n^2 = 1856 \rightarrow n^2 = 464 \text{ RPM}
\]

\[
\frac{464}{n^2} = \frac{4}{1,6} \rightarrow 4n^2 = 742,4 \rightarrow n^2 = 186 \text{ RPM}
\]

Conclui-se que a ultima polia do sistema de redução possui uma rotação de 186 RPM tal que será a mesma dos eixos que rotacionam a esteira.

Pode-se descobrir também qual foi a porcentagem de redução da velocidade.

\[
\frac{2900 \text{ RPM}}{186 \text{ RPM}} = \frac{100\%}{x} \rightarrow 2900x = 18600 \rightarrow x = 6,41\%
\]

100\% - 6,41\% = 93,6\%

Houve uma redução de 93,6\% da rotação do motor(RPM) para o eixo da esteira.

Cálculo da vazão de areia que cai da esteira:

De acordo com que a areia cai da esteira é formado um cone. A altura máxima que este cone poderá atingir será 14 cm (2R), quando isso acontecer o raio máximo será de 7 cm. O volume do cone é calculado usando a fórmula:
\[V_c = \frac{\pi R^2 h}{3} \rightarrow V_c = \frac{\pi h}{3} \rightarrow V_c = \frac{\pi h^3}{12} \]

Usando os conceitos de taxas relacionados pode-se calcular a variação da altura em relação ao tempo.

\[\frac{dv}{dt} = \frac{dv}{dh} \cdot \frac{dh}{dt} \]

\[\frac{dv}{dt} = 94,2 \text{cm}^3/\text{min} \]

\[\frac{dv}{dh} = \frac{3\pi h^2}{12} \rightarrow \frac{dv}{dh} = \frac{\pi h^2}{4} \]

\[94,2 = \frac{\pi h^2}{4} \cdot \frac{dh}{dt} \rightarrow \frac{dh}{dt} = \frac{376,8}{\pi(14)^2} \]

Substituindo altura por 14cm,

\[\frac{dh}{dt} = \frac{376,8}{\pi(14)^2} \rightarrow \frac{dh}{dt} = 0,612 \text{cm/s} \]

Também é possível construir uma fórmula para calcular a altura em determinado tempo ou vice-versa

\[V(t) = 94,2t \]

Calculando a velocidade média e velocidade instantânea:

Sabe-se que a velocidade média é a inclinação da reta secante em um determinado intervalo de tempo que é calculado fazendo a razão entre a variação da posição \(x \) pela variação do tempo \(t \). Sendo assim:

\[V_m = \frac{\Delta x}{\Delta t} \rightarrow V_m = \frac{38 - 0}{4 - 0} \rightarrow V_m = 0,095 \text{m/s} \]
Já a velocidade instantânea é a inclinação da reta tangente em um determinado tempo ou \(\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} \).

Como a velocidade da esteira é constante, a velocidade média e a velocidade instantânea será a mesma.

Pode-se calcular também a aceleração instantânea que é a derivada da velocidade instantânea. Sendo a velocidade uma constante a aceleração será nula.
8.4 Desenho Técnico

Abaixo segue as vistas dos desenhos do projeto elaborados utilizando o software AutoCad:

Figura 20: Vistas ortogonais e auxiliares da esteira.

Fonte: o autor.

Fonte: o autor.
Figura 22: Vistas ortogonais e auxiliares do sistema de redução de polias.

Fonte: o autor.

Figura 23: Dimensões das polias maiores.

Fonte: o autor.
Figura 24: Dimensões das polias menores.

Fonte: o autor.

Figura 25: Vista da perspectiva isométrica do sistema de redução de polias.

Fonte: o autor.
Figura 26: Vista da perspectiva da esteira e do sistema de redução de polias.

Fonte: o autor.

8.5 Ciência Tecnologia e Sociedade

Bem com relação aos impactos na sociedade, as Esteiras Transportadoras em si tiveram um impacto direto como um todo principalmente na área industrial, pois no que se trata de Ergonomia no transporte de grandes cargas de um determinado ponto a outro ou de um equipamento a outro, seja por uma simples distância reta, numa elevação para carregamento, numa declinação para descarga as Esteiras automatizaram todo o trabalho que antes era feito por trabalhadores, que tinham que lidar com “altas cargas em suas costas”.

Assim, todo o trabalhador cujo sua atividade era por exemplo transportar uma sacaria manualmente de um ponto a outro passou a ter seu trajeto reduzido a somente retirar-lo da esteira e acomodar-lo no caminhão ou qualquer outro sistema de transporte utilizado para entrega do produto ao consumidor final, assim acelerando o processo além de ajudar o trabalhador e evitar possíveis lesões por esforço físico intenso pois antes era feito todo o trajeto manualmente. Porém com as esteiras inicialmente muito rusticas veio o problema da
seguir, pois ao retirar a sacaria da esteira observaram que poderiam haver riscos de agarramento e prensamento de membros e como em toda nova tecnologia não havia se pensado no operador a princípio e nem aos danos possíveis a estrutura do equipamento. Porém ao longo dos anos foram desenvolvidos vários dispositivos cujo objetivo era assegurar a segurança do trabalhador e do equipamento.

Abaixo segue uma lista dos principais dispositivos de segurança existentes em uma esteira transportadora.

Chave de emergência:
É uma chave dotada de um cabo de aço ligado a um dispositivo elétrico instalado ao longo do transportador, cuja finalidade é interromper, automaticamente, o funcionamento da correia, em caso de surgimento de anormalidades operacionais, tais como, sobrecarga, deslizamento, desalinhamento, além de o trabalhador poder puxar-la interrompendo todo o processo em caso de uma emergência física para o mesmo. Abaixo tem-se a figura da mesma.

Figura 27: Chave de emergência.

Detector de rasgos:

Dispositivo eletromecânico instalado sob a face de carga próximo ao ponto de alimentação, cuja finalidade é detectar o início do surgimento de rasgo na correia. Com isso, evita-se o prolongamento do rasgo.

Figura 28: Detector de rasgos.

Detector de metais:

É um dispositivo constituído de uma chapa de aço e dotado de um campo magnético de baixa intensidade para detectar presença de peças metálicas maiores, tais como dentes de escavadeira, chapas de revestimento de chutes, etc.
Figura 29: Detector de metais.

Extrator de sucatas:

É um dispositivo eletromagnético constituído de uma correia giratória e um núcleo com campo magnético que detecta e atrai peças metálicas pequenas, tais como porcas, parafusos, eletrodos, ferramentas, etc. e, pela ação do movimento da correia, retira essas peças, arremessando-as para uma caixa coletora.

Figura 30: Extrator de sucatas.

Detector de desalinamento da correia:

É um sensor elétrico instalado geralmente nos alimentadores de correia para detectar desalinhamentos das mesmas.

Figura 31: Detector de desalinamento da correia.

Assim como todo texto citado acima conclui-se que as Esteiras Transportadoras tiveram um impacto muito importante na sociedade facilitando o trabalho e diminuindo riscos ergonômicos existentes aos trabalhadores que desempenhavam as funções de carregamento de cargas, além de otimizar o processo no quesito tempo.
9 CONCLUSÃO

O relatório e protótipo TAI foram desenvolvidos por dois simples motivos aparentemente, que seriam agregar nota e desenvolver pratica das matérias como um todo.

Porém, com o desenvolvimento do protótipo e do relatório descobrimos que vai muito além, ele nos prepara para situações difíceis como: decisões a serem tomadas, exercer liderança, trabalhar sobre pressão e com prazos.

Ou seja a disciplina TAI tal como o desenvolvimento de todo nosso trabalho nós prepara e ensina não só como usarmos ferramentas; mais também faz com que possamos nos descobrir como profissionais completos, despertando em nós o espírito de liderança e de convivência com mais diferentes tipos de situação.

Vimos que podemos aprender muito uns com os outros independente de função ou especialidade, e concluímos que como um todo o desenvolvimento desse trabalho é muito benéfico para o amadurecimento pessoal e profissional, nós não simplesmente desenvolvemos um protótipo e um relatório, nós desenvolvemos e moldamos um pouco mais a nossa personalidade para melhor.
REFERÊNCIAS

