Piscando um LED com Arduino Princípios básicos para acionamento de componentes

Arthur Caio Vargas e Pinto

MANUAL DO ALUNO

1.1. Introdução

Neste curso vocês irão aprender a piscar um LED com Arduino. Pode até parecer um projeto simples, mas ele serve como base para a utilização do Arduino no controle de diversos dispositivos. Os conceitos aprendidos neste curso servirão tanto para o acionamento de LEDs quanto de outros dispositivos externos como motores, lâmpadas, e etc. Montar um circuito elétrico e criar o código de programação para fazer o LED piscar com Arduino geralmente é o primeiro passo para iniciantes, pois mostra que o aluno é capaz de programá-lo. Esse primeiro projeto é, portanto, um pequeno grande passo no aprendizado de eletrônica e programação e permite que o aluno possa se aventurar em projetos mais complexos depois.

Esta atividade servirá para introduzir os conceitos de eletrônica e programação. Se você não tem nenhum ou pouco contato com esses assuntos, não se preocupe, pois esse é um curso de curta duração e seu objetivo não é ensinar de fato a programar. O foco desta atividade é o de apresentar os principais conceitos básicos sobre essas áreas, explicar o funcionamento e permitir a manipulação dos componentes, com o intuito de despertar o seu interesse neste campo do conhecimento até então inacessível.

Vocês vão começar aprendendo o que são e como funcionam os materiais e componentes utilizados na atividade, principalmente sobre o Arduino. Verão que o LED possui polaridade e que deve ser ligado do jeito certo, além de conhecer a tabela de cores de resistores.

Após esta etapa, o professor/instrutor irá explicar o funcionamento de circuitos elétricos básicos, incluindo a ligação de componentes e como a corrente "se movimenta" pelo circuito. Haverá uma discussão sobre fontes de energia e o primeiro circuito será montado. Na terceira etapa, vocês aprenderão como utilizar o Arduino para atuar no papel de fonte para o circuito, possibilitando ligar e desligar o circuito utilizando programação. Vocês também vão aprender a montar um circuito com Arduino e a enviar o código de programação para a placa, além de entender o que cada palavra do código faz.

Por fim, serão propostos desafios para que você teste seus conhecimentos em circuitos elétricos e programação em Arduino. Ao final do curso, vocês terão sido apresentados à componentes básicos de circuitos eletrônicos e aos principais conceitos sobre eletrônica básica. Além disso, terão um contato inicial com lógica de programação e serão capazes de desenvolver seus próprios códigos a partir de um código de exemplo que será fornecido.

1.2. Situação problema

Podemos construir grandes projetos de automação com a placa Arduino, capazes de receber dados e controlar grandes equipamentos. Mas antes de nos aventurarmos por esses caminhos mais complexos, precisamos conhecer e aprender a criar projetos mais simples, mas de grandes ensinamentos. Assim, este curso propõe o desafio de usar o Arduino para piscar um LED, ou seja, controlar quando ele fica aceso e quando fica apagado. Ao término do curso, você terá conhecimento técnico e motivação suficientes para pesquisar e aprender mais sobre Arduino, eletrônica e programação, criando projetos cada vez mais complexos e interessantes.

1.3. Questão motriz

A questão motriz que nos motiva a realizar esta atividade é: **Como utilizar a eletrônica para realizar o acionamento de dispositivos?** Para responder à essa pergunta, utilizaremos uma lâmpada de LED de baixa potência e veremos circuitos e códigos de programação para controlá-la. Os códigos que estudaremos para o LED servirão de base para o controle de dispositivos mais complexos.

Para este curso utilizaremos alguns componentes eletrônicos juntamente com a placa Arduino. A seguir é apresentada a Tabela 1 em que são descritos os materiais necessários para a realização da atividade, juntamente com imagens dos equipamentos, quantitativo, e opções de substituição.

Item	Nome do item	Descrição	Quant.	Foto	Substituição
1	LED vermelho	LED monocromático na cor vermelha	2	Fonte: Eletrogate (2022a)	LEDs de outras cores
2	Bateria	Bateria alcalina de 9V (qualquer marca)	1	Fonte: Robocore (2022)	Caso o uso da bateria não seja possível, utilizar o pino de saída de 5V do Arduino
3	Resistor	Resistor de 510Ω	1	Fonte: Baú da Eletrônica (2022a)	Resistores na faixa de 510Ω a 1kΩ
4	Resistor	Resistor de 300Ω	2	Fonte: Baú da Eletrônica (2022b)	Resistores na faixa de 270Ω a 330Ω

Tabela 1 – Materiais para o curso.

5	Fios conectores	Fios para conexão de componentes	10	Fonte: Eletrogate (2022b)	Não há substituto
6	Protoboard	Protoboard 400 pontos	1	Fonte: Allan Mota (2022)	Protoboard de outros tamanhos
7	Arduino	Placa Arduino Uno R3 + Cabo USB para Arduino	1	Fonte: Filipeflop (2022)	Não há substituto

Muitos nomes que você nunca viu na vida? Fique tranquilo que vamos explicar um pouco sobre como funciona cada componente.

2.1 O Arduino UNO

O Arduino é uma placa de código aberto projetada na Itália que surgiu para ser utilizada como forma de prototipagem eletrônica, com o objetivo de tornar a robótica e a eletrônica mais acessíveis à artistas, designers, *hobbistas* e qualquer pessoa interessada em criar objetos ou ambientes interativos. Idealizada por Massimo Banzi e David Cuartielles em 2005, a placa surgiu como uma maneira mais barata de estudar eletrônica e programação, além de ser uma excelente ferramenta para iniciantes no estudo das linguagens de programação, tornando o aprendizado de eletrônica e engenharia muito menos maçante e difícil. Desde sua criação, cada versão lançada do Arduino se mostrava mais simples e mais fácil de ser usada (MCROBERTS, 2018). Resumidamente, pode-se dizer que o Arduino é um pequeno computador que o programamos de acordo com a nossa necessidade. O Arduino possibilita a criação de projetos de diferentes tamanhos e complexidades, desde programas que acendem LEDs a sistemas de captação de dados provenientes de uma infinidade de sensores que possuam compatibilidade com a placa.

Outra característica essencial do Arduino é que todo o material, incluindo bibliotecas, hardware e o próprio software, é de código aberto, ou seja, pode ser

reproduzido e usado por qualquer pessoa sem a necessidade do pagamento de direitos autorais a seus criadores (EVANS, NOBLE e HOCHENBAUM, 2013). Além disso, a existência de uma forte comunidade online, com sites e fóruns dedicados, permitiu a criação de um extenso acervo de bibliotecas e códigos na internet. Tanto entusiastas quanto profissionais compartilham seus códigos na internet, auxiliando ainda mais iniciantes em busca de aprendizado.

O Arduino pode ser programado por meio de uma linguagem de programação própria baseada na linguagem *Wiring*, semelhante à linguagem C++. Utilizando o IDE (ambiente de desenvolvimento integrado) específico, é possível escolher a placa que se está utilizando, além de contar com diversas bibliotecas e exemplos de utilização para programadores iniciantes (SOUZA, 2014).

De forma geral, cada placa Arduino é constituída por um microcontrolador, pinos digitais e analógicos de entrada e saída e uma porta USB. Além disso, o Arduino também acompanha um ambiente de desenvolvimento para a programação no computador. Existem diversos modelos de Arduino disponíveis no mercado, cada qual com sua peculiaridade, variando número de portas, tipo de conexão USB, etc. Uma das placas mais populares e a que utilizaremos nesta aula prática é a UNO, que apresenta baixo custo e possui recursos suficientes para a execução de variados projetos.

O Arduino UNO é equipado com um microcontrolador da série ATMEGA de 8 bits. A placa possui 14 pinos digitais de entrada e saída, sendo que seis destes podem ser usados como saídas analógicas. Possui também seis entradas analógicas, conexão USB e um conector de alimentação, podendo então ser alimentado via USB, ou por meio de baterias ou fontes externas (SOUZA, 2014).

Além das portas digitais e analógicas, o Arduino UNO possui pinos de energia de 5V e 3,3V para alimentar outros componentes eletrônicos do circuito. Resumidamente, o *hardware* de um Arduino é descrito na Figura 1.

Figura 1 – Arduino UNO. Fonte: DIYIOT (2022).

2.2 Diodo Emissor de Luz (LED)

Um LED é um diodo emissor de luz (do inglês, *Light Emitting Diode*) que realiza um procedimento eletroquímico chamado de eletroluminescência, que é quando um material emite resposta luminosa se percorrido por uma corrente elétrica, sendo basicamente uma lâmpada que consome pouca energia. Um LED pode ser produzido em muitas cores e é utilizado principalmente como indicador luminoso em projetos eletrônicos, estando presente em quase todos os dispositivos eletrônicos para indicar que os mesmos estão energizados.

O LED, assim como alguns componentes, possui polaridade. Assim, possui um lado positivo "+" e um lado negativo "-". Para que um LED funcione corretamente, primeiramente é necessário que a polarização esteja correta. Para que isso ocorra você deve ligar o terminal positivo do LED no VCC e o negativo no GND do seu circuito, do contrário não haverá condução e isso prejudicará todo o restante do circuito. A identificação de polos de um LED pode ser feita pela estrutura do corpo do mesmo, como mostra a Figura 2.0 polo positivo (anodo) conta com maior haste metálica para a ligação com a placa, além de encapsulamento plástico circular do lado positivo, enquanto o lado negativo (catodo) apresenta menor haste de contato e encapsulamento achatado, como ilustrado.

Figura 2 – Diodo emissor de luz - LED. Fonte: Locatelli (2022).

2.3 Resistores

Resistores são componentes eletrônicos cuja principal função é limitar o fluxo de corrente elétrica que passa em um circuito por meio da conversão da energia elétrica em energia térmica e estão entre os dispositivos mais simples e mais comuns entre os circuitos eletrônicos.

Uma boa notícia é que diferentemente dos LEDs, resistores não possuem polaridade, por isso você pode ligar um resistor tranquilamente pois ele não tem lado positivo ou negativo, ou seja, tanto faz o lado em que é conectado.

Os resistores possuem diferentes valores de resistência, sendo que quanto maior a resistência, mais ele irá limitar a corrente que passa por ele. O valor de um resistor é fixo e é indicado pelas faixas de cores pintadas nele, de acordo com a Figura 3.

Cor	1ª Faixa	2ª Faixa	Faixa multiplicadora	Tolerância
Preto	0	0	×1Ω	
Marrom	1	1	×10Ω	±1%
Vermelho	2	2	×100Ω	±2%
Laranja	3	3	×1kΩ	-
Amarelo	4	4	×10kΩ	-
Verde	5	5	×100kΩ	±0,5%
Azul	6	6	×1MΩ	±0,25%
Violeta	7	7	×10MΩ	±0,1%
Cinza	8	8		±0,05%
Branco	9	9	-	-
Dourado	-	-	×0,10Ω	±5%
Prateado	-	-	×0,01Ω	±10%
Sem cor	-	-	-	±20%

Figura 3 – Tabela de códigos de resistores. Fonte: Embarcados (2022).

2.4 Protoboard

Protoboards são ferramentas que auxiliam no desenvolvimento de protótipos de circuitos eletrônicos. Com elas, torna-se desnecessária a soldagem de componentes eletrônicos em uma placa de circuito impresso. Sem dúvida, a protoboard é uma das ferramentas mais importantes para iniciantes na eletrônica.

Como dito, a grande vantagem de uma protoboard é permitir montar e testar circuitos sem que se tenha que soldar os componentes. Dessa forma, você pode testar diferentes configurações e componentes para o circuito, até encontrar a configuração final que atenda seus objetivos. Cada protoboard é composta por furos interconectados por um material condutor localizado abaixo da camada de plástico, conforme mostra a Figura 4:

Figura 4 – Barramentos de uma protoboard. Fonte: Portal Vida de Silício (2022).

As linhas representam as ligações internas da protoboard, que podem ser divididas em duas seções. A primeira seção, formada pelas duas linhas superiores e inferiores, geralmente é utilizada para distribuir a alimentação elétrica do circuito. A segunda seção, formada pela parte central da protoboard, é destinada à montagem dos componentes.

É importante você entender que como cada coluna (linha vertical na imagem) possui 5 furos, e estes furos estão interconectados, ao inserir um componente em um deles, ele estará eletricamente conectado aos outros quatro furos da coluna.

3.1 Conhecendo os materiais (Etapa 1)

Antes de começar de fato a colocar a mão na massa, precisamos conhecer os equipamentos que iremos utilizar. Por isso, nesta primeira etapa, leia as informações para conhecer mais sobre o Arduino, LEDs, resistores e protoboard. Ao longo da leitura o professor irá mostrar uma placa Arduino e você poderá ver todos os pinos de conexão. Leia com atenção e tire suas dúvidas com o professor, pois este primeiro momento fornecerá a base teórica necessária para a realização das atividades seguintes.

1) Complete a tabela a seguir com informações sobre os materiais:

Pergunta sobre os materiais	Resposta
Quantos pinos digitais possui o Arduino?	
Quantos pinos analógicos possui o Arduino?	
O LED possui polaridade?	
O resistor possui polaridade?	
A "perna" maior do LED corresponde ao polo positivo ou negativo?	
A "perna" menor do LED corresponde ao polo positivo ou negativo?	

2) Porque devemos usar um resistor quando vamos ligar um LED?

3.2 Entendendo um circuito elétrico (Etapa 2)

Agora sim! Você já conhece os componentes então vamos montar o nosso primeiro circuito elétrico!

Um circuito elétrico basicamente é um laço por onde circula "energia" elétrica, energizando cada componente e fazendo-os funcionar. Assim, usando a protoboard monte o circuito exibido na Figura 5 composto por bateria + resistor (510 Ω) + LED. Lembre-se das regras de ligações na protoboard, e se precisar, volte no material anterior para revisar.

Veja que a bateria é a fonte do circuito, ou seja, é de onde sai a energia para energizar os outros componentes. O lado positivo da fonte é chamado de VCC e o lado negativo é chamado de GND. Nesse exemplo, o LED se acende quando a fonte de energia

é ligada e se apaga ao se desligar a fonte. Lembre-se também que o pino maior do LED é o polo positivo e o menor, o negativo. Se a ligação for invertida, o LED não irá acender.

Figura 5 – Circuito para a Etapa 2. Fonte: Construído com o auxílio de TinkerCAD (2022).

1) Qual é o papel do resistor nesse circuito?

3.3 Automatizando o circuito (Etapa 3)

Meus parabéns! Você montou com sucesso o seu primeiro circuito elétrico. Você viu que a bateria alimenta o circuito, mas não há nenhum controle sobre o ligar e desligar do LED. Agora vamos deixa-lo um pouco mais "inteligente", já que o Arduino pode fazer o papel de fonte para o circuito, possibilitando ligar e desligar o circuito utilizando programação

Para começar, retire a bateria e construa o circuito composto por Arduino + resistor (300Ω) + LED (conectado ao pino 13 do Arduino) como exibido na Figura 6.

Figura 6 – Circuito para a Etapa 3. Fonte: Construído com o auxílio de TinkerCAD (2022).

Após a construção, conecte o cabo USB ao Arduino e ao computador e abra IDE do Arduino pelo atalho que se encontra na área de trabalho do computador.

Faça como indicado pelo professor e defina as configurações de placa e porta COM em Ferramentas no IDE. Como mostra a Figura 8, em **Ferramentas -> Placa** deve ser escolhida a placa Arduino UNO e em **Ferramentas -> Porta** deve ser escolhida a porta COM em que se encontra conectado o Arduino. Este procedimento deve ser realizado todas as vezes que você conectar a placa ao computador.

Figura 8 – Configurações do IDE do Arduino.

Atenção: A não definição da placa e porta COM no IDE é uma das principais causas de erros de funcionamento de código feitos por iniciantes.

Entendido o IDE do Arduino, agora digite o código de programação da Figura 7 dentro da área central branca do IDE, que é justamente onde devemos colocar nossos códigos de programação.

```
int pinoLED = 13;
void setup() {
    pinMode(pinoLED, OUTPUT);
}
void loop() {
    digitalWrite(pinoLED, HIGH);
    delay(1000);
    digitalWrite(pinoLED, LOW);
    delay(1000);
}
```

Figura 7 – Código para a Etapa 3.

Ao carregar o código para a placa, aguarde alguns segundos e veja que o LED permanece aceso por 1 segundo e depois apagado por mais um segundo, em um comportamento de "pisca-pisca". Este comportamento é observado indefinidamente devido à função **loop()**. Veja que agora conseguimos controlar quando o LED se acende e apaga, e por quanto tempo permanece nesses estados. Esse é o conceito inicial de automação, uma vez que o estado de um componente está sendo alterado sem a interação humana.

2) O que faz a linha de código pinMode(pinoLED,OUTPUT)?

3) O que significam as palavras HIGH e LOW no código?

3.4 Desafios (Etapa 4)

Você já conhece os componentes, montou circuitos elétricos e carregou um código de programação para o Arduino. Agora é hora de testarmos se você realmente aprendeu essas coisas. Para finalizar, realize os três desafios abaixo para consolidar seu

aprendizado e estar pronto para seguir adiante. Para completá-los, você deve usar como base os circuitos e códigos que construiu até agora.

Desafio 1: Trocar o pino ao qual o LED está conectado para o pino 10 e fazê-lo piscar assim como feito anteriormente.

Faça com que o LED esteja conectado ao pino 10 do Arduino, ao invés do pino 13 como estava antes. Lembre-se das explicações do professor e altere o circuito e também o código de programação.

1) O que acontece se você apenas trocar o fio do pino ao qual o LED está conectado, mas não mudar a programação? O LED ainda acenderá?

2) Qual linha do código você teve que alterar para que o Arduino soubesse qual o novo pino ao qual o LED estava conectado?

Desafio 2: Alterar o tempo em que o LED fica ligado para 3 segundos e desligado para 2 segundos.

O LED fica aceso por 1 segundo e apagado por 1 segundo. Achou esse tempo muito curto? Podemos alterar o tempo aceso e apagado usando a função **delay()** que o professor explicou. Sabendo disso, altere o tempo de 1 para 3 segundos ligado e de 1 para 2 segundos desligado.

1) Quais linhas de código você teve que alterar para que o tempo ligado e desligado mudasse?

Desafio 3: Adicionar mais um LED ao circuito e fazer com que os dois LEDs se acendam de forma alternada.

Neste desafio você deverá juntar todos os conhecimentos adquiridos até agora e criar um circuito com dois LEDs que irão acender e apagar de forma alternada, ou seja, quando um estiver aceso, o outro estará apagado. Conecte um LED ao pino digital 5 do

Arduino, e o outro ao pino digital 6. Lembre-se de sempre usar um resistor quando for ligar um LED.

1) Quais linhas você terá que adicionar ao código para "informar" ao Arduino sobre o pino de conexão e modo de operação (saída ou entrada) do novo LED?

2) Qual função deverá ser usada para acender o novo LED? E para apaga-lo?

Gabarito

Desafio 1: Trocar o pino ao qual o LED está conectado para o pino 10 e fazê-lo piscar assim como feito anteriormente.

Considerando-se que você passe o LED para o pino 10, a Figura 8 exibe o código que resolve este desafio.

```
int pinoLED = 10;
void setup() {
    pinMode(pinoLED, OUTPUT);
}
void loop() {
    digitalWrite(pinoLED, HIGH);
    delay(1000);
    digitalWrite(pinoLED, LOW);
    delay(1000);
}
```

Figura 8 – Código para o Desafio 1.

1) O que acontece se você apenas trocar o fio do pino ao qual o LED está conectado, mas não mudar a programação? O LED ainda acenderá?

Devemos alterar tanto o circuito quanto a programação, por isso, além de trocar o fio do pino ao qual o LED está conectado, temos que mudar também a linha em que é declarada a variável pinoLED.

2) Qual linha do código você teve que alterar para que o Arduino soubesse qual o novo pino ao qual o LED estava conectado?

Deve-se alterar a linha de código em que é declarada a variável pinoLED: int pinoLED = 10;

Desafio 2: Alterar o tempo em que o LED fica ligado para 3 segundos e desligado para 2 segundos.

A Figura 9 exibe o código que resolve este desafio.

```
int pinoLED = 10;
void setup() {
    pinMode(pinoLED, OUTPUT);
}
void loop() {
    digitalWrite(pinoLED, HIGH);
    delay(3000);
    digitalWrite(pinoLED, LOW);
    delay(2000);
}
```

Figura 9 – Código para o Desafio 2.

1) Qual linha de código você teve que alterar para que o tempo mudasse?

Deve-se alterar as linhas correspondentes à função delay(): O primeiro delay(1000) para delay(3000) e o segundo delay(1000) para delay(2000);

Desafio 3: Adicionar mais um LED ao circuito e fazer com que os dois LEDs se acendam de forma alternada.

Supondo que o novo LED 1 seja conectado ao pino 5 e o LED 2 ao pino 6, as figuras 10 e 11 exibem, respectivamente, o circuito e código que resolvem este desafio.

Figura 10 – Circuito para o Desafio 3. Fonte: Construído com o auxílio de TinkerCAD (2022).

```
int pinoLED = 5;
int pinoLED2 = 6;
void setup() {
    pinMode(pinoLED, OUTPUT);
    pinMode(pinoLED2, OUTPUT);
}
void loop() {
    digitalWrite(pinoLED, HIGH);
    digitalWrite(pinoLED2, LOW);
    delay(1000);
    digitalWrite(pinoLED, LOW);
    digitalWrite(pinoLED2, HIGH);
    delay(1000);
}
```

Figura 11 – Código para o Desafio 3.

1) Quais linhas você terá que adicionar ao código para "informar" ao Arduino sobre o pino de conexão e modo de operação (saída ou entrada) do novo LED?

Int pinoLED2 = 6; e pinMode(LED2,OUTUPUT);

2) Qual função deverá ser usada para acender o novo LED? E para apaga-lo?

digitalWrite(pinoLED2,HIGH); e digitalWrite(pinoLED2,LOW); respectivamente.

Referências

BAU DA ELETRONICA. **Resistor 300 ohms**. 2022b. Disponível em: http://www.baudaeletronica.com.br/resistor-300r-5-1-4w.html Acesso em: 25 set. 2022.

BAU DA ELETRONICA. **Resistor 510 ohms**. 2022a. Disponível em: http://www.baudaeletronica.com.br/resistor-510r-5-1-4w.html Acesso em: 25 set. 2022.

CASA DA ROBÓTICA. **Protoboard**. 2022. Disponível em: <<u>http://www.casadarobotica.com/prototipagem-ferramentas/prototipagem/protoboard/protoboard/protoboard/protoboard-400-furos-65-fios-jumpers-macho-x-macho</u>> Acesso em: 25 set. 2022.

DIYIOT. **Tutorial Arduino UNO**. 2022. Disponível em: http://diyi0t.com/Arduino-uno-tutorial/ Acesso em: 25 set. 2022.

ELETROGATE. **Jumpers**. 2022b. Disponível em: <<u>http://www.eletrogate.com/jumpers-macho-macho-40-unidades-de-10-cm</u>> Acesso em: 25 set. 2022.

ELETROGATE. **LED**. 2022a. Disponível em: <<u>http://www.eletrogate.com/led-difuso-5mm-vermelho</u>>. Acesso em: 25 set. 2022.

EMBARCADOS **Código de cores de resistores**. 2022. Disponível em: http://embarcados.com.br/codigo-de-cores-de-resistores Acesso em: 26 set. 2022.

EVANS, Martin; NOBLE, Joshua; HOCHENBAUM, Jordan. **Arduino em ação**. São Paulo: Novatec Editora, 2013.

FILIPEFLOP. Arduino UNO. 2022. Disponível em: <<u>http://www.filipeflop.com/produto/placa-uno-r3-cabo-usb-para-arduino</u>> Acesso em: 25 set. 2022.

LOCATELLI, Caroline. **O que é um LED?**. Curto Circuito, 2022. Disponível em: http://www.curtocircuito.com.br/blog/eletronica-basica/o-que-e-um-led Acesso em: 25 set. 2022.

MCROBERTS, Michael. Arduino básico. Novatec Editora, 2018.

MOTA, Allan. **Protoboard**. Portal Vida de Silício, 2018. Disponível em: <<u>http://portal.vidadesilicio.com.br/protoboard</u>> Acesso em: 25 set. 2022.

ROBOCORE. **Bateria de 9V**. 2022. Disponível em: <<u>http://www.robocore.net/bateria/bateria-de-9v</u>> Acesso em: 25 set. 2022.

SOUZA, Vitor A. Programação Para Arduino. Clube de Autores, 2014.

TINKERCAD. 2022. Disponível em: http://www.tinkercad.com Acesso em: 20 set.

Laboratório de Inovação Tecnológica - LIC

