

PROJETO PRELIMINAR DE UM VENTILADOR DE FLUXO AXIAL UTILIZANDO A DINÂMICA DOS FLUIDOS COMPUTACIONAL (CFD)

Douglas Melo dos Santos 1; Francisco de Sousa Júnior²

1 Douglas Melo dos Santos, Bolsista (IFMG), Engenharia Mecânica, IFMG Campus Arcos, Arcos - MG; douglasdm9@outlook.com 2 Orientador: Pesquisador do IFMG, Campus Arcos; francisco.sousa@ifmg.edu.br

RESUMO

Ventiladores axiais são utilizados em diversas aplicações industriais, onde projetos de rotores de média e alta eficiência podem ser desenvolvidos visando aplicações específicas. Existem duas abordagens fundamentais no projeto e análise deste equipamento: experimentação e cálculo. A primeira em geral envolve a construção de modelos testados em túneis de vento, enquanto a última envolve a solução de equações diferenciais, seja analítica ou computacionalmente (Dinâmica dos Fluidos Computacional - CFD). A abordagem computacional (CFD) é empregada para diminuir o ciclo de projeto através de estudos paramétricos cuidadosamente controlados, reduzindo assim a quantidade necessária de testes experimentais e consequentemente os custos de projetos. Ou seja, as análises experimentais e da CFD se complementam. Nos projetos modernos de ventiladores de fluxo axial, os projetistas calculam as propriedades globais, mas usam a CFD para obter os detalhes sobre o campo de escoamento, como as tensões de cisalhamento, os perfis de velocidade e de pressão e as linhas de corrente do escoamento. Além disso, os dados experimentais são muito usados para validar as soluções da CFD, comparando as quantidades globais determinadas pelos métodos computacional e experimental. Em seguida, a CFD é empregada para diminuir o ciclo de projeto através de estudos paramétricos cuidadosamente controlados, reduzindo assim a quantidade necessária de testes experimentais. Assim, no projeto em questão são realizados os cálculos analíticos utilizando a teoria do escoamento em grades lineares, a teoria da asa de sustentação, a condição de equilíbrio radial e a condição de vórtice livre para o cálculo dos parâmetros fundamentais globais. De posse destes dados são realizadas as análises de desempenho do ventilador axial utilizando-se de um software CFD. Os resultados obtidos inicialmente se mostraram promissores. No entrando, houve uma diferença na pressão estática final calculada pelo CFD e a pré-estabelecida no início do projeto. Tal fato se deve a adoção de algumas variáveis de projeto como a escolha da razão de solidez e o número de pás. Essa diferença poderia ser minimizada através do uso de algoritmos de otimização, no entanto esta ferramenta não está no escopo deste trabalho. No final, pode-se concluir que mesmo com essa diferença o uso do guia proposto é fundamental para obter os dados preliminares para implementação de um projeto mais robusto de um ventilador axial

Palavras-chaves: Ventilador de fluxo axial, dinâmica dos fluidos computacional, perfil aerodinâmico

INTRODUÇÃO:

O projeto de um ventilador axial esbarra na complexidade que envolve diversas áreas da engenharia mecânica. A questão: " Por onde se inicia o projeto?" se torna o primeiro problema. Várias variáveis devem ser admitidas no início do projeto e depois validadas para consolidação. Tal complexidade é gradual e eleva-se à medida que caminha para a etapa final. Desta forma, a definição de um guia básico mínimo para se iniciar um projeto se torna aplicável para que as dúvidas sejam mitigadas ao longo do processo.

A teoria do escoamento de fluidos em grades lineares é largamente aplicada no projeto aerodinâmico de rotores de máquinas de fluxo axial. A partir de 1940, os cálculos começaram a incorporar alguns elementos relacionados a "teoria da asa de sustentação", desenvolvida especificamente para os perfis das asas de aeronaves. Apesar desta teoria ter sido desenvolvida para o estudo de uma pá isolada (asa de um avião), foi satisfatoriamente aplicada nas máquinas axiais com um número reduzido de pás, como em bombas, ventiladores e turbinas (Camacho et al., 2016). Em conjunto com as condições de equilíbrio radial e vórtice livre empregadas corretamente são o método mais adequado e atualmente o mais moderno empregado nos projetos de ventiladores axiais. Em conjunto com a CFD reduzem drasticamente problemas que, a princípio, só poderiam ser diagnosticados após a construção de modelos/protótipos.

Teoria da grade linear e da asa de sustentação

Na Figura (1) são mostrados detalhes do escoamento de uma grade linear representativa de um rotor e estator axial junto aos triângulos de velocidade. A grade é composta de perfis aerodinâmicos

idênticos e igualmente espaçados, no qual o espaçamento entre os perfis é o passo (t) e o comprimento da corda é (l). No triângulo, as velocidades absolutas (c), relativa (ω) e tangencial (u) apresentam subscritos referente a entrada (3), saída (6), projeção meridional (m), projeção tangencial (u) e referente ao triângulo médio (∞). São representados também os ângulos (α) e (β) do escoamento. Admite-se que o escoamento se processe nestas superfícies cilíndricas, sem componente radial, podendo assim ser estudado na grade linear correspondente. Admite-se ainda escoamento bidimensional, permanente, incompressível e não-viscoso (potencial).

Figura 1. Grade linear móvel de máquina de fluxo axial e triângulo de velocidades (Camacho et al., 2013).

Considerando a circulação da grade, a força da pá e o adimensional coeficiente de sustentação (C_s) pode-se obter uma expressão onde são correlacionadas as variáveis da grade e o coeficiente de sustentação, Equação (1), onde (ΔC_u) e (ω_∞) (m/s) são a componente tangencial da velocidade absoluta e a velocidade relativa média respectivamente. A Equação (1) constitui a base de cálculo de turbo máquinas axiais, via teoria da asa de sustentação. Nessa equação, relacionam-se grandezas obtidas nos triângulos de velocidades com as características adimensionais desejadas para os perfis da grade (Camacho et al., 2013).

$$C_s \frac{l}{t} = \frac{2\Delta C_u}{\omega_{\infty}}$$
 (1)

Equação de equilíbrio radial e condição de vórtice livre

A equação de equilíbrio radial desempenha um papel fundamental no estabelecimento das distribuições de velocidade (Sarmiento, 2013). Para a distribuição de velocidades axiais na direção radial em turbo máquinas axiais, essa equação pode ser resolvida pela condição de vórtice livre e vórtice forçado. Neste projeto é adotada a condição de vórtice-livre, formulação comumente utilizada em projeto hidro ou aerodinâmico de turbo máquinas axiais, definida a seguir na Equação (2), onde (C_m) e (C_a) (*m/s*) são as componentes meridional e axial da velocidade absoluta e (Y_{pa}) (*J/kg*) o trabalho específico do ventilador.

A Equação (2) relata que se $C_m = C_a$ é constante ao longo do comprimento da pá, então Y_{pa} também é constante ao longo da pá e vice-versa. A condição de vórtice livre permite o projeto dos ventiladores axiais com perdas mínimas, onde a energia específica é uniformemente distribuída ao longo da altura da pá, permitindo um ganho adicional em sua eficiência de operação.

$$C_m = C_a = constante \Leftrightarrow Y_{pa} = constante$$
 (2)

METODOLOGIA:

Guia de dimensionamento do ventilador axial

A metodologia apresentada por (Bran e Souza, 1969) e parâmetros iniciais de um rotor fornecido por (Camacho et al., 2013) foram utilizados para conduzir o procedimento de projeto. O ventilador axial escolhido tem os parâmetros de projeto mostrados na Tabela 1 a seguir. Também são mostrados os cálculos preliminares necessários para dimensionar o ventilador.

Tabela 1. Parâmetros de projeto para o ventilador axial

Parâmetros de projeto			Cálculos Preliminares		
Vazão	Q (m^{3}/s)	2,28	Trabalho específico	Y (J/kg)	593,5
Diferença de pressão estática	ΔP_t (Pa)	711	Potência de eixo	$P_e(kW)$	2,165
Velocidade de rotação	n (rpm)	2850	Rotação específica	n _{qA} (-)	596,5
Densidade do ar	ρ (kg/m ³)	1,2	Relação entre diâmetros	D_{i}/D_{e} (-)	0,5
Número de pás	N _{pa}	9	Coeficiente de diâmetro	δ (-)	1,5
Eficiência hidráulica	η (%)	80	Coeficiente de ligeireza	σ(-)	1,26
Diâmetro externo	D_e (mm)	460			
Diâmetro interno	<i>D</i> _{<i>i</i>} (mm)	230			

A seguir é mostrado a sequência de passos para o cálculo de máquinas axiais proposto por (Bran e Souza, 1969).

1. Diâmetros $D_i e D_e$: Embora já fornecidos, são verificados em de diagramas de Cordier, através dos quais características adimensionais otimizadas são utilizadas para verificar se os diâmetros são apropriados com a faixa recomendada (Sarmiento, 2013). Além do cubo e da ponta do ventilador, são escolhidas pelo menos mais duas estações radiais para determinar a geometria da pá.

2. Triângulos de velocidade: Para cada estação radial são calculados os componentes dos triângulos de velocidade e o produto do coeficiente de sustentação e a razão de solidez: $(C_s \frac{l}{r})$ Equação (1).

3. Passo (*t*): Calcula-se a distância entre cada pá em cada estação radial.

4. Razão de solidez (l/t): Um parâmetro geométrico fundamental calculado é a razão de solidez, em que os valores adotados dependem da experiência do projetista, pois até então nenhuma regra geral e consistente foi formulada para sua escolha (Resmini, 2013). Duas correlações publicadas sobre o efeito da razão de solidez foram testadas. A primeira apresentada por (McKenzie, 1997) com base nos estudos da *Rolls Royce Aero Division* sugere uma relação linear entre o inverso da razão de solidez (l/t) e o coeficiente de pressão (C_{vi}), Equação (3) e Equação (4):

$$\frac{t}{l} = 9.(0,567 - C_{pi})$$
 (3) $C_{pi} = 1 - (\omega_6/\omega_3)^2$ (4)

A segunda correlação publicada por (Howell, 1942) resultado de um grande trabalho teórico e experimental, demonstrou pela primeira vez que a deflexão tangencial depende unicamente da razão de solidez, para uma grande faixa de condições de saída, Equação (5):

$$\tan(\beta_1) - \tan(\beta_2) = \frac{1.55}{1+1.55 (t/l)}$$
 (5)

Além das correlações citadas acima foram estudados dois critérios para limitar a difusão permitida no rotor. O primeiro, o número de *De Haller*, definido como a razão entre as velocidades relativas do escoamento (ω_6/ω_3), que não deve ser menor que 0.72 pois valores menores causam perdas excessivas (SARAVANAMUTTOO et al., 2009). O segundo critério, o fator de difusão Equação (6) foi desenvolvido pela NACA, definido como um parâmetro de carregamento da pá para um fluxo de fluido incompressível e bidimensional (McKenzie, 1997). As perdas na região do cubo do rotor não aumentam com um fator de difusão até 0.6 e na ponta para valores menores que 0.4 (SARAVANAMUTTOO et al., 2009).

$$D_F = \left(1 - \frac{\cos\alpha_1}{\cos\alpha_2}\right) + 0.5.\left(\frac{t}{l}\right) \cdot \cos\alpha_1 \cdot (\tan\alpha_1 - \tan\alpha_2) \quad (6)$$

5. Coeficiente de sustentação (C_s) e corda do perfil (l): Obtida a razão de solidez e as componentes dos triângulos de velocidade, calcula-se o coeficiente de sustentação e o comprimento da corda do perfil da pá em cada estação radial.

6. Escolha do perfil aerodinâmico adequado: Através do diagrama polar que relaciona o coeficiente de sustentação (C_s) e coeficiente de arraste (C_a), escolhe-se o perfil em que o coeficiente de escorregamento (ε) seja o mínimo, dado que tan(ε) = (C_a/C_s).

7. Espessuras máximas dos perfis (y_{max}) : Por requisitos de resistência dos materiais, são estimadas as espessuras máximas dos perfis. Pode-se aproximar y_{max} pela Equação (8), onde *a* e *b* são constantes disponíveis para a família de perfis aerodinâmicos escolhidos. Também são calculadas as espessuras relativas (y_{max}/l) , a razão entre a espessura máxima e a corda em cada estação radial.

$$C_s = a \frac{y_{max}}{l} + \delta b \quad (7)$$

8. Demais parâmetros: Após a escolha dos perfis são calculados os ângulos de ataque (δ) e de montagem das pás (β). Os ângulos de ataque devem decrescer de forma suave do cubo à ponta da pá, evitando valores negativos ou muito grandes (próximos ao *stall* do perfil) (Camacho et al., 2013). São calculados também os coeficientes de afinamento (C_0), o número de Reynolds baseado na corda do perfil aerodinâmico (R_e), coeficiente de escorregamento (ε) e grau de reação (τ) para cada estação radial.

Etapas da Simulação Numérica (CFD)

A simulação numérica é composta por três partes. Na primeira, o pré-processamento, foi utilizado o *Vista Afd* ® para obter a geometria das pás e fornecer uma estimativa da performance do ventilador, comparando com critérios calculados manualmente. Para a geração da malha, foi utilizado o *Turbo Grid 19.1* ® com a criação de um canal periódico para a geometria de uma pá do ventilador como mostrado na Figura 2. A malha gerada apresenta 206024 elementos, com uma região de refinamento próxima aos bordos de ataque e de fuga da pá. A simulação em um canal com condição de periodicidade é aplicada em máquinas de fluxo com base na hipótese de equilíbrio radial, executando a análise apenas no domínio referente a uma pá.

Figura 2. Canal periódico e região de refinamento

A malha gerada no domínio computacional foi exportada para o *Cfx 19.1* ® e as condições são definidas a seguir:

 Superfície de entrada e saída: É especificado um fluxo mássico de 2,736 kg/s, (1/9) desse valor em cada canal referente a uma pá isolada, no qual o fluido de trabalho é definido como ar à 25°C. A pressão atmosférica e adotada como referência. O nível de intensidade de turbulência é definido como 5 % e taxa de viscosidade turbulenta de 5. Na saída do canal utiliza-se a condição de fluxo de saída (*outflow*).

2) Superfícies periódicas e paredes: A condição de periodicidade rotacional é adotada nas paredes do domínio referente a pá isolada que fazem fronteira com o domínio adjacente igualando as propriedades com as células vizinhas do plano periódico oposto. As condições de contorno de parede são utilizadas nas regiões sólidas por onde circula o fluido, superfícies que podem ser estacionárias ou podem se movimentar Sarmiento (2013). No domínio analisado as zonas referentes ao cubo e a ponta da pá foram definidas com movimento rotacional além da condição de escorregamento nulo.

Na segunda parte, no *Solver*, o modelo de turbulência utilizado foi o $k - \varepsilon$ standard, usualmente aplicado na modelagem de turbulência para aplicações industriais devido a fácil convergência

RESULTADOS E DISCUSSÕES:

Projeto Preliminar

Os cálculos foram executados em 4 estações radias. A Tabela 2 mostra o resultado dos cálculos do passo 2 do dimensionamento do ventilador axial, referente aos componentes dos triângulos de velocidade.

Estação	D	u	ΔC_u	α ₆	ω∞	$\boldsymbol{\beta}_{\infty}$
-	mm	m/s	m/s	graus	m/s	graus
cubo	230	34,32	21,60	40,2	29,79	37,88
а	307	45,81	16,18	48,5	41,92	25,87
b	383	57,15	12,97	54,6	53,86	19,85
ponta	460	68,64	10,80	59,4	65,83	16,13

Tabela 2. Valores do triângulo de velocidades

De posse dos dados do triângulo de velocidades, foi feito um estudo da razão de solidez adequada para o perfil da pá através dos critérios de aproximação mostrados na metodologia. A primeira correlação testada, publicada por (McKenzie, 1997), Equação (3) e Equação (4), foi inconsistente devido a razão de solidez negativa encontrada, o que não faz sentido matematicamente. Nesse caso, o que é feito segundo a metodologia é mudar a razão de cubo D_i/D_e para obter valores mais adequados, que é descrito na prática na faixa entre 0,5 e 1,5 para o inverso da razão de solidez (t/l). A segunda correlação (Howell, 1942), Equação (5) também não foi considerada como uma boa aproximação devido ao alto valor de razão de solidez encontrado no cubo, o que causaria enormes perdas. Deve ser observado que mesmo que estudos anteriores possam dar dicas sobre o efeito da razão de solidez ao longo do projeto, nenhuma delas permite por si mesma escolher a solidez adequada sem o suporte de um modelo de previsão de perda ou de um processo interativo (Resmini, 2013), observando também a discrepância na comparação dos resultados nos dois métodos aplicados, levando a diferentes valores. Foram calculados o fator de difusão para os valores de razão de solidez adotados por (Camacho et al., 2013) e para os valores calculados pela aproximação de (Howell, 1942). A Tabela 3 mostra os valores encontrados juntamente com o número de *De Haller* como primeiro critério de aproximação para a difusão permitida.

Tabela 3. Fator de dilusão e numero de De Halie	Tabela 3.	Fator de	difusão	e número	de De Hall
---	-----------	----------	---------	----------	------------

D (mm)	(Howell, 1942) (<i>l</i> / <i>t</i>)	Fator de difusão	(Camacho et al., 2013)	Fator de difusão	Número de <i>De</i> <i>Haller</i>
230	4 79	0.48	(l/t)	0.66	0.53
307	1.99	0.38	0.85	0.49	0,33
383	1,26	0,29	0,65	0,37	0,80
460	0,26	0,23	0,50	0,30	0,85

Observa-se que já no critério inicial, o número de De *Haller*, é indicado a necessidade de mudança nas dimensões do rotor para que então se possa calcular o fator de difusão como critério final seguindo esta metodologia de projeto. A Tabela 4 mostra o resultado dos cálculos das etapas 3 até 8 em cada estação radial, já escolhidos os perfis aerodinâmicos.

D	$C_{s}\left(l/t\right)$	l/t	t	l	C_s	Perfil	y _{max}	y_{max}/l	δ	β	Co	R _e	Е	τ
mm	-	-	mm	mm	-	-	mm	-	graus	graus	-	10 ⁵	-	-
230	1,420	1,20	80,28	96,3	1,210	GÖ 682	9,0	0,0934	8,28	46,16	0,877	2,0	0,017	0,685
307	0,772	0,85	107,2	91,1	0,908	GÖ 682	8,0	0,0878	5,29	31,16	0,824	2,7	0,012	0,823
383	0,482	0,65	133,7	86,9	0,741	GÖ 428	7,0	0,0805	3,85	23,70	0,976	3,3	0,016	0,886
460	0,328	0,50	160,6	80,3	0,656	GÖ 428	6,0	0,0747	3,23	19,36	0,905	3,7	0,014	0,921

Tabela 4. Cálculos para cada estação radial utilizando perfis base GÖ 682 e GÖ 428

Comparativo com a simulação numérica

O resultado da análise feita no *Vista Afd* ® é mostrado na Figura 3 a seguir, juntamente com o modelo 3D do ventilador axial. O destaque em vermelho indica valores fora da faixa recomendada.

Figura 3. Análise Vista Afd ®

a) Análise preliminar Vista Afd ®

b) Modelo 3D do ventilador axial

Assim como mostrado na Tabela 3, já no critério inicial, o número de *De Haller* fora da faixa recomendada no cubo do rotor indica que as perdas serão excessivas nessa região. O valor do número de *De Haller* para o cubo foi de 0,47, próximo de 0,53 calculado na Tabela 3, também fora da faixa recomendada (> 0.72). Outro parâmetro que está elevado é o carregamento no cubo. De modo geral o rotor apresenta bons parâmetros de acordo com o cálculo na linha média, podendo ter sua geometria alterada em função da razão de diâmetros e solidez conforme necessários.

Na terceira parte da simulação, na análise dos resultados pelo CFD-Post ® vários gráficos são gerados referentes ao comportamento do escoamento. A Figura 4 mostra a variação das pressões manométricas totais e estática. No eixo das abcissas a variável *streamwise location* representa a posição no canal periódico, onde 0 é referente a entrada e 1 referente a saída. Observando o comportamento das duas curvas, percebe-se que a pressão total (*Pt*) mantém-se 0 *Pa*, ou seja, igual a pressão de referência atmosférica, até passar pela pá onde a pressão é aumentada em 673 *Pa*. A pressão estática (*Ps*) a partir da entrada é menor que a pressão atmosférica devido a sucção do ar, onde ao passar pelo ventilador tem um ganho de 574 *Pa*, que representa a variação de pressão estática.

Figura 4 – Variação da pressão estática (Ps) e total (Pt) manométricas

CONCLUSÕES:

A simulação numérica indicou uma variação na pressão estática do ar de 574 *Pa*, menor do que 711 *Pa* que se pretendia inicialmente. Devido a essa diferença, as seguintes hipóteses são apontadas pelo qual mesmo dimensionado para realizar um aumento na pressão estática de 711 *Pa* a partir do projeto preliminar, foi obtido um valor menor.

• Maior refinamento da malha: Foi utilizado a versão para estudantes do ANSYS 19.1 ® com limitações no número de elementos na malha computacional. Apesar de suficiente para este caso, um maior refinamento da malha em um *software* com licença profissional conduziria à resultados mais precisos.

• Diâmetros externo e interno do ventilador: Os diâmetros fornecidos inicialmente foram comparados através de diagramas de Cordier. De acordo com a metodologia de (Camacho et al., 2013), é razoável adotar o diâmetro externo de 460 mm e razão de cubo de 0,5 por estarem próximos dos valores indicados pelos diagramas. Uma alternativa seria aproximar mais ou adotar os valores dos diagramas observando o comportamento de pressão estática através de outras simulações numéricas.

• Razão de solidez adotada: A solidez geralmente é escolhida por experiência do projetista por não ter uma regra estritamente definida. Outros valores podem ser adotados e testados, através da CFD e pelos adimensionais Fator de Difusão e o número de *De Haller*.

• Número de pás: Caso não for restrição do projeto, pode ser testado aumentar ou diminuir o número de pás do ventilador e analisar se ouve alteração na pressão estática.

Todos esses parâmetros geométricos citados anteriormente podem ser conjuntamente alterados e testados, o que conduziria a um trabalho de otimização para encontrar as dimensões ideais em que o ventilador opere com uma variação de pressão estática de 711 *Pa* pretendida. Apesar da diferença na pressão estática final obtida, o trabalho apresentado atingiu seu objetivo principal que era pré dimensionar o ventilador de fluxo axial utilizando ferramentas de dinâmica dos fluidos computacional. Considerando que um trabalho de otimização não era a meta deste projeto, uma sugestão para trabalhos futuros seria estudar a variação dos parâmetros da geometria da pá mencionados, um caso de otimização numérica.

REFERÊNCIAS BIBLIOGRÁFICAS:

CAMACHO, P. R. G. R. et al. Teoria da asa de sustentação aplicada às máquinas de fluxo. Unifei - Universidade Federal de Itajubá, 11 2013.

CAMACHO, R. G. R. et al. Methodology of preliminary design and performance of a axial-flow fan through cfd. *International Journal of Aerospace and Mechanical Engineering*, Havana, Cuba, 11 2016.

HOWELL, A.; SUPPLY, A. R. C. Ministry of. *The Present Basis of Axial Flow Compressor Design. Pt. 1. Cascade Theory and Performance.* [S.I.]: H.M. Stationery Office, 1942. (ARC technical report).

MCKENZIE, A. Axial Flow Fans and Compressors: Aerodynamic Design and Performance. [S.I.]:

Ashgate, 1997. (Cranfield Series in Turbomachinery). ISBN 9780291398505.

RESMINI, M. Numerical investigation of the solidity effect on a linear compressor cascade performance and stability. *COPEC*, 7 2013.

SARAVANAMUTTOO, H. et al. *Gas Turbine Theory*. [S.I.]: Pearson Prentice Hall, 2009. ISBN 9780132224376.

SARMIENTO, A. L. E. Desenvolvimento de uma metodologia para o projeto aerodinâmico de rotores axiais reversíveis de ventiladores de jato de túneis rodoviários. *Unifei - Universidade Federal de Itajubá*, 3 2013.

SOUZA, Z. de. Máquinas de fluxo: turbinas, bombas, ventiladores. [S.I.]: Ao Livro Tecnico, 1969.